
The Db2 Access Plan
Troubleshooting Handbook

John Hornibrook, IBM Canada

1

Themes

2

Finding the access plan troublemakers

Getting to the truth: optimizer fantasy vs. runtime reality

Bringing the optimizer back to reality

When the optimizer has done its best

Desperate measures

2

Before we begin – what is an access plan?

• An Access Plan represents a sequence of runtime operators used to
execute the SQL statement

• Represented as a graph where each node is an operator and the
edges represent the flow of data

• The order of execution is generally left to right
• But there are some exceptions
• (Hash join build table is on the RHS and is created first)

• Use the explain facility to see the access plan

3

HSJOIN

CATALOG_

SALES

DATE_DIM

TBSCAN TBSCAN

1) Create

hash table

2) Probe

hash table

3

The explain facility – what is it?
• Internal phase of the optimizer that captures critical information

used in selecting the query access plan

• Access plan information is written to a set of tables

• External tools to format explain table contents:
• Db2 Data Management Console Visual Explain
• GUI to render and navigate query access plans
• Supersedes Data Server Manager Visual Explain

• db2exfmt
• Text-based output from the explain tables
• Command-line interface

4

They show the same
information

The explain facility is used to display the query access plan chosen by the query optimizer to run an SQL statement. It contains extensive details

about the relational operations used to run the SQL statement such as the plan operators, their arguments, order of execution, and costs. Since the

query access plan is one of the most critical factors in query performance, it is important to be able to understand the explain facility output in

order to diagnose query performance problems.

Explain information is typically used to:

▪ understand why application performance has changed

▪ evaluate performance tuning efforts

4

Decide where to look in the db2exfmt

• What section to check first depends on the situation
• Are you familiar with the system config?
• Does the optimizer have the correct information?
• Does the system have enough memory for this query?

• Are you sure the statistics are current?
• Check the access plan graph
• Check the access plan details

5

5

Understand the db2exfmt layout

• Main sections:
1. System configuration summary
2. Original statement
3. Optimized statement (after query transformations)
4. Access plan graph
5. Extended diagnostic information
6. Plan details
7. Objects used in access plan (and their statistics)

6

6

db2exfmt - System configuration summary

7

Database Context:

Parallelism: Inter-Partition Parallelism

CPU Speed: 3.188324e-07

Comm Speed: 100

Buffer Pool size: 1202128

Sort Heap size: 429252

Database Heap size: 4633

Lock List size: 6200

Maximum Lock List: 60

Average Applications: 1

Locks Available: 119040

Package Context:

SQL Type: Dynamic

Optimization Level: 5

Blocking: Block All Cursors

Isolation Level: Cursor Stability

Does the CPUSPEED DBM

config look reasonable? (Set

automatically by Db2)

Enough memory (buffer pool

and sort heap) ?

You should understand if this

is something other than 5

(the default)

Leave this set to 1

Does the COMM_BANDWIDTH

DBM config look reasonable?

(DPF only - set automatically by

Db2)

7

db2exfmt – Access plan graph

Rows

RETURN

(1)

Cost

I/O

|

4
NLJOIN

(13)

185.206

7

/-------+------\

1 4

IXSCAN FETCH

(14) (15)

75.0966 100.118

3 4

| /----+---\

4.99966e+06 4 1.99987e+07

INDEX: TPCD IXSCAN TABLE: TPCD

UXP_NMPK (16) PARTSUPP

75.1018

3

|

1.99987e+07

INDEX: TPCD.UXPS_PK2KSC

8

Cardinality (rows)

Operator name

(Operator ID)

Cost (timerons)

I/O (pages)

We will be paying close

attention to this number

Base table cardinality from

catalog statistics

Cost estimates are

cumulative i.e. represents

cost of operator + its

input plans

8

Db2 Data Management Console Visual Explain

9

9

Data Server Manager Visual Explain

Operator name

Cost (timerons)

10

10

Check the Cardinality Estimates

• Cardinality = number of rows

• The optimizer estimates the number of rows processed by each
access plan operator

• Based on the number of rows in the table and the filter factors of
applied predicates.

• This is the biggest impact on estimated cost!

• Catalog statistics are used to estimate filter factors and cardinality

11

11

Checking Cardinality Estimates

12

|

0.0327916

^HSJOIN

(4)

1.13515e+06

677451

/-------+-------\

2.88279e+09 3.4184e-06

TBSCAN TBSCAN

(5) (6)

1.10132e+06 1839.17

675933 1518

| |

2.88279e+09 300520

CO-TABLE: TPCDS CO-TABLE: TPCDS

STORE_SALES ITEM

Q1 Q2

Cardinalities < 1 could be

under-estimations

They propagate up the

plan and could cause bad

plan choices later

Cardinality estimates < 1 should be treated with suspicion because they could be under-estimated. That being said, it is expected for the
cardinality to be < 1 if the probability of at least 1 row being returned is small. But this tends to be a rare situation. In order to understand the
cardinality estimate, we need to understand what predicates were applied. So let’s check the details for TBSCAN(6) …

12

Checking Predicates

• Check the operator details to see predicates and
their filter factors

• 4 equality predicates with literals

13

6) TBSCAN: (Table Scan)

Predicates:

2) Sargable Predicate,

Comparison Operator: Equal (=)

Filter Factor: 2.52819e-05

Predicate Text:

(Q2.I_PRODUCT_NAME = 'Zoom ')

3) Sargable Predicate,

Comparison Operator: Equal (=)

Filter Factor: 0.000594525

Predicate Text:

(Q2.I_BRAND = 'Swoosh ')

4) Sargable Predicate,

Comparison Operator: Equal (=)

Filter Factor: 0.00798552

Predicate Text:

(Q2.I_CLASS = 'athletic shoes')

5) Sargable Predicate,

Comparison Operator: Equal (=)

Filter Factor: 0.0947691

Predicate Text:

(Q2.I_CATEGORY = 'Sports ')

These are the predicates applied at TBSCAN(6) and their filter factors.

13

Checking Combined Predicate Filtering

• Are the predicates independent or correlated?

• The optimizer assumes they are independent

• In this situation, they appear correlated
• ‘Swoosh’ and ‘Zoom’ probably only occur with ‘Sports’ and ‘athletic shoes’

14

3.4184e-06 = -- TBSCAN cardinality

2.52819e-05 *

0.000594525 *

0.00798552 *

0.0947691 *

300520 -- Table cardinality

6) TBSCAN: (Table Scan)

Predicates:

(Q2.I_PRODUCT_NAME = 'Zoom ‘) AND

(Q2.I_BRAND = 'Swoosh ‘) AND

(Q2.I_CLASS = 'athletic shoes’) AND

(Q2.I_CATEGORY = 'Sports ')

14

Verifying Cardinality Estimates

• Confirm the cardinality estimates

• Method 1: COUNT(*) queries
• This can be tedious and tricky, especially for multiple joins and complex queries

• Method 2: Explain with actual cardinality

15

SELECT COUNT(*) FROM TPCDS.ITEM AS Q2

WHERE

(Q2.I_PRODUCT_NAME = 'Zoom ‘) AND

(Q2.I_BRAND = 'Swoosh ‘) AND

(Q2.I_CLASS = 'athletic shoes’) AND

(Q2.I_CATEGORY = 'Sports ')

15

16

Explain with Actual Cardinality

• Capture cardinality processed by each access plan operator at runtime

• Compare with the optimizer’s estimates to identify possible access plan
problems

• Estimated cardinality is most important input to cost model

• Use explain from access section mechanism

• Easiest method:

db2caem -d <dbname> -st "SQL stmt"
• Db2 Capture Activity Event Monitor data tool

• Fine print: doesn’t collect actuals for column-organized processing
• Use Method 1

16

https://www.ibm.com/docs/en/db2/11.5?topic=information-capturing-accessing-section-actuals

Alternative method:

1) WLM setup:

Create workload or use default workload (to collect activity data)

2) Use WLM_SET_CONN_ENV stored procedure for the current connection

call wlm_set_conn_env(null, '<collectactdata>with details, section </collectactdata><collectsectionactuals>base</collectsectionactuals>');

Activate activity event monitor

SET EVENT MONITOR ACTEVMON STATE 1;

Execute SQL statement

Locate SQL statement information in event monitor table to pass to EXPLAIN_FROM_ACTIVITY stored procedure:

SELECT APPL_ID, UOW_ID, ACTIVITY_ID, STMT_TEXT FROM ACTIVITYSTMT_ACTEVMON;

-- APPL_ID UOW_ID ACTIVITY_ID STMT_TEXT

-- ------------------------- -------- -------------- ---------------

-- *N2.DB2INST1.0B5A12222841 1 1 SELECT * FROM ...

Populate the explain tables:

CALL EXPLAIN_FROM_ACTIVITY('*N2.DB2INST1.0B5A12222841', 1, 1, 'ACTEVMON', 'MYSCHEMA', ?, ?, ?, ?, ?);

Format the explain tables as usual e.g. db2exfmt

Actual Cardinality Example

17

|

0.0327916

75233

^HSJOIN

(4)

1.13515e+06

677451

/-------+-------\

2.88279e+09 3.4184e-06

2.88279e+09 8

TBSCAN TBSCAN

(5) (6)

1.10132e+06 1839.17

675933 1518

| |

2.88279e+09 300520

CO-TABLE: TPCDS CO-TABLE: TPCDS

STORE_SALES ITEM

Q1 Q2

Significant under-estimation!!

Error propagates

throughout the plan

(Data flows upward in

explain graph)

Rows

Rows Actual

OPERATOR

(1)

Cost

I/O

17

Correcting for Data Correlation

• For equality predicates, use column group statistics to tell the
optimizer about the correlation:

• Represents the number of distinct values in the set of columns

• Statistics and columns are stored in:
• SYSSTAT.COLGROUPS
• SYSCAT.COLGROUPCOLS

18

RUNSTATS ON TABLE TPCDS.ITEM

ON COLUMNS ((I_CATEGORY,I_CLASS,I_BRAND,I_PRODUCT_NAME))

WITH DISTRIBUTION AND DETAILED INDEXES ALL

SYSSTAT.COLGROUPS.COLGROUPCARD = 37120

Note the extra set of parentheses.

Best practice RUNSTATS options

18

Corrected Cardinality Estimates

19

|

72882.4

75233

^HSJOIN

(4)

1.13515e+06

677451

/-------+-------\

2.88279e+09 7.5977

2.88279e+09 8

TBSCAN TBSCAN

(5) (6)

1.10132e+06 1839.17

675933 1518

| |

2.88279e+09 300520

CO-TABLE: TPCDS CO-TABLE: TPCDS

STORE_SALES ITEM

Q1 Q2

Estimate much closer to actual

with column group statistics

7.5977 = MIN(2.52819e-05,

0.000594525, 0.00798552,

0.0947691, 1 / 37120) * 300520

= 2.52819e-05 * 300520

(Only includes the filter factor of

the most filtering predicate)

More accurate after the

join too.

Rows

Rows Actual

OPERATOR

(1)

Cost

I/O

19

Automatic Column Group Statistics (Db2 11.5)

• Identifying correlation and specifying RUNSTATS options requires
effort

• IBM Data Management Console provides a statistics advisor
• Recommends statistics options based on SQL statements
• https://www.ibm.com/docs/en/db2-data-mgr-console/3.1.x?topic=new-version-316

• Db2 does this automatically as part of automatic statistics collection
• Performs an automatic discovery of pair-wise column group statistics
• Registers a statistics profile with the column group statistics options
• Later automatic statistics collection will use the statistics profile
• Automatic discovery only occurs during asynchronous (background) collection
• Controlled by the AUTO_CG_STATS DB configuration parameter
• OFF by default

20

https://www.ibm.com/docs/en/db2/11.5?topic=oap-collecting-accurate-catalog-statistics-including-advanced-
statistics-features

The optimizer uses column group statistics to account for statistical correlation when estimating the combined
selectivity of multiple predicates and when computing the number of distinct groupings for operations that group
data such as GROUP BY or DISTINCT. Gathering column group statistics can be automated through the automatic
statistics collection feature in Db2. Enabling or disabling the automatic collection of column group statistics is done
by using the auto_cg_stats database configuration parameter. To enable this function, issue the following
command: update db cfg for dbname using auto_cg_stats on

The automatic collection of column group statistics will generate a profile describing the statistics that need to be
collected. If a user profile does not exist, the background statistics collection will initially perform an automatic
discovery of pair-wise column group statistics within the table and set a statistics profile. After the discovery is
completed, statistics are gathered on the table using the existing statistics profile feature. The set of column
groups discovered is preserved across subsequent discoveries.

If a statistics profile is already manually set, it will be used as is and the discovery is not performed. The
automatically generated statistics profile can be used together with any PROFILE option of the RUNSTATS
command. If the profile is updated using the UPDATE PROFILE option, any further discovery is blocked on the table,
but the set of column group statistics already set in the profile will continue to be collected automatically as well as
with a manual RUNSTATS that includes the USE PROFILE option.

The UNSET PROFILE command can be used to remove the statistics profile to restart the discovery process.

To disable this feature, issue the following command: update db cfg for dbname using auto_cg_stats off

Disabling this feature will prevent any further discovery, but the statistic profiles will persist and will continue to be
used. If there is a need to remove the profile, use the UNSET PROFILE option of RUNSTATS.

20

Correcting Cardinality Estimates

• Column group statistics help for equality predicates only

• Try statistical views for more complex situations:
• Correlation among inequality predicates
• Skew across joins
• Predicates with expressions

• Use SELECTIVITY clause for more stubborn situations:
• WHERE <complex predicate> SELECTIVITY 0.1234

• Must set DB2_SELECTIVITY=ALL registry variable

• Future:
• Machine learned cardinality estimation models
• Available in tech preview in 11.5.5+

21

https://www.ibm.com/docs/en/db2/11.5?topic=optimization-statistical-views

The DB2 cost-based optimizer uses an estimate of the number of rows – or cardinality – processed by an access
plan operator to accurately cost that operator. This cardinality estimate is the single most important input to the
optimizer’s cost model, and its accuracy largely depends upon the statistics that the RUNSTATS utility collects from
the database. The statistics described earlier in this presentation are all important for computing an accurate
cardinality estimate, however there are some situations where more sophisticated statistics are required. In
particular, more sophisticated statistics are required to represent more complex relationships, such as
comparisons involving expressions (for example, price > MSRP + Dealer_markup), relationships spanning multiple
tables (for example, product.name = 'Alloy wheels' and product.key = sales.product_key), or anything other than
predicates involving independent attributes and simple comparison operations. Statistical views are able to
represent these types of complex relationships because statistics are collected on the result set returned by the
view, rather than the base tables referenced by the view.

When a query is compiled, the optimizer matches the query to the available statistical views. When the optimizer
computes cardinality estimates for intermediate result sets, it uses the statistics from the view to compute a better
estimate.

Queries do not need to reference the statistical view directly in order for the optimizer to use the statistical view.
The optimizer uses the same matching mechanism used for materialized query tables (MQTs) to match queries to
statistical views. In this respect, statistical views are very similar to MQTs, except they are not stored permanently,
so they do not consume disk space and do not have to be maintained.

21

Correlated Sub-plans

• “Correlated” means referencing columns outside the current sub-
select

• Correlation is often expensive to process

• The optimizer tries to remove correlation by automatically rewriting
the query

• It can’t do it in every situation

22

SELECT T1.CODE,

(SELECT A.CDATE FROM T2 A WHERE A.PID = T1.PID AND A.VERS =

(SELECT MIN(B.VERS) FROM T2 B

WHERE B.PID = T1.PID AND B.CODE = T1.CODE) AS MINVERS)

FROM T1

The query on this page has a scalar sub-select (in purple) in the select-list of the
outermost select (in black). The scalar sub-select applies a scalar subquery (in
teal, or whatever that bluish colour is ;-)). Both scalar sub-selects reference
columns from T1 which is referenced in the outermost select. These references to
T1 are correlated references which means that the scalar sub-selects must be
executed for every qualifying T1 row.

22

Looking for Correlated Sub-plans

23

0.110777

^NLJOIN

(6)

1442.91

506

/-----------+-----------\

3.43408 0.0322581

BTQ FILTER

(7) (15)

471.053 952.074

192 312

| |

1.14469 1

NLJOIN DTQ*
(8) (16)

468.185 952.037

192 312

/----+----\ |

1 1.14469 0.0260758

GRPBY CTQ ^NLJOIN

(9) (13) (17)

4.04028 464.109 951.173

0 192 312

| | /----+-----\

3 1.14469 0.0308423 0.281818

MBTQ TBSCAN TBSCAN TBSCAN

(10) (14) (18) (26)

T1 T2

Correlation is very expensive in a partitioned

DB (MPP) system.

Look for “listener table queues” (denoted by *).

The sub-plan below the TQ* is re-executed for

every outer row.

T1.PID must be passed from one side of the plan

to the other.

The sub-plan from FILTER(15) and below must

be executed for every T1 row.

T1.PID = T2.PID

23

Other Signs of Correlated Sub-plans

24

0.110777

^NLJOIN
(6)

1442.91

506

/-----------+-----------\

3.43408 0.0322581

BTQ FILTER

(7) (15)

471.053 952.074

192 312

| |

1.14469 1

NLJOIN DTQ*

(8) (16)

468.185 952.037

192 312

/----+----\ |

1 1.14469 0.0260758

GRPBY CTQ ^NLJOIN

(9) (13) (17)

4.04028 464.109 951.173

0 192 312

| | /----+-----\

3 1.14469 0.0308423 0.281818

MBTQ TBSCAN TBSCAN TBSCAN

(10) (14) (18) (26)

Only nested-loop join can be used to implement

correlated sub-plans.

Check the operator details to see that no join

predicates are applied by this NLJOIN.

Correlation must execute in the row engine if

column-organized tables are being used

(CTQ = Column-organized Table Queue

Sends columnar data to row-engine)

Another clue that there are correlated sub-plans is nested-loop join operators (NLJOIN) with no join predicates. This means that the inner (RHS)
of NLJOIN is re-executed for every outer row. The correlated references are somewhere in the NLJOIN inner and they could be in predicates or
select-list items. Identify the correlated references in the optimized SQL and then check the operator details to locate them.

One issue with correlated sub-plans is that they cannot execute in the columnar runtime if the statement references column-organized tables.
This means that the NLJOIN that drives the correlated sub-plan executes in the row-organized runtime. This can be identified by looking for
column-organized table queue (CTQ) operators lower in the access plan. The CTQ operator passes data from the columnar runtime to the row-
organized runtime. Ideally there should only be one CTQ in the access plan and it should be near the very top of the plan.

24

Dealing with Correlated Sub-plans

• Create indexes if correlated references are in predicates
• E.g. create an index on T2.PID in previous example
• This allows the T2.PID=T1.PID predicate to be applied more efficiently

• Try a higher optimization level
• The optimizer might be able to decorrelate

• Manually rewrite the query to remove the correlation

25

25

Check for Risky HSJOIN Build Tables

26

0.000173087

HSJOIN

(8)

456522

122652

/-------------------------------+-------------------------------\

1000 0.000173087
TBSCAN ^HSJOIN

(9) (10)

62.0912 456460

9 122643

| /------------+------------\

1000 0.00106296 47.0591

CO-TABLE: DBUSER ^HSJOIN TBSCAN

CUSTOMER (11) (22)

Q4 456398 62.0365

122634 9

/------------+------------\ |

2.88279e+09 1.00003 289

TBSCAN TBSCAN CO-TABLE: DBUSER

(12) (21) STORE

456336 62.018 Q3

122625 9

| |

2.88279e+09 208

CO-TABLE: DBUSER CO-TABLE: DBUSER

DAILY_SALES PROMO

Q1 Q2

Plan tree starts with a

large table

Cardinality is < 1

and the plan tree is

on the build side of

HSJOIN(8)

This could perform

badly if the actual

cardinality is large,

due to excessive

memory usage

and/or spilling to a

system temporary

table

26

Check for Spilling SORTs

27

TBSCAN

(3)

8.90346e+07

2.08077e+07

|

2.71211e+09

SORT

(4)

7.53051e+07

1.07422e+07
|

2.71211e+09

^HSJOIN

(5)

1.14095e+06

676797
/-------+-------\

2.88279e+09 282726

TBSCAN TBSCAN

(6) (7)

1.10132e+06 1044.65

675933 864

| |

2.88279e+09 300520

CO-TABLE: TPCDS CO-TABLE: TPCDS

STORE_SALES ITEM

Q1 Q2

SORT’s I/O estimate increases

1.07422e+07 – 676,797 = 10,065,403 pages

Check SORT operator details:

ROWWIDTH: (Estimated width of rows)

112.250000

SPILLED : (Pages spilled to bufferpool or disk)

1.00654e+07

TEMPSIZE: (Temporary Table Page Size)

32768

Optimizer doesn’t choose the specific temp

tablespace but it does choose the page size

Spilling SORTs are those that can’t fit in memory (sortheap) so they are written to temporary tables. If the temporary table doesn’t fit in the
buffer pool it will be written to disk. The optimizer tries to model this and will include the extra I/O cost.

Check for increases in I/O estimate at the SORT operator.

It might be necessary to increase the sortheap or bufferpool size to avoid spilling to disk.

The optimizer doesn’t choose a specific system temporary tablespace but it does choose the page size which indirectly determines the
tablespace. Check that the tablespaces and bufferpools for the chosen page size have enough space.

27

Check Spilling for Other Operators

28

33664

SORT

(4)

1.13607e+07

2.839e+06

|

33664

GRPBY

(5)

1.13606e+07

2.839e+06
|

2.71211e+09

^HSJOIN

(6)

1.14023e+06

676177
/-------+-------\

2.88279e+09 282726

TBSCAN TBSCAN

(7) (8)

1.10132e+06 328.181

675933 244

| |

2.88279e+09 300520

CO-TABLE: TPCDS CO-TABLE: TPCDS

STORE_SALES ITEM

Q1 Q2

Spilling occurs at GRPBY.

No spilling at SORT.

HSJOIN can spill too.

But this one does not.

676177 = 675933 + 244

Operators that can spill:
SORT, TEMP, HSJOIN,
GRPBY (column-organized),
UNIQUE (column-organized)

GROUP BY and UNIQUE operations processing column-organized data use a hash table that is stored in sortheap memory. Their memory
consumption can be significant and could spill to bufferpool and disk. Check them out too.

28

Expanding (M:N) Joins

29

|

2.13973e+10

HSJOIN

(4)

1.42235e+06

791354

/-------+-------\

2.88279e+09 2.54618e+06

TBSCAN TBSCAN

(5) (6)

1.10132e+06 242310

675933 115421

| |

2.88279e+09 7.83762e+08

CO-TABLE: TPCDS CO-TABLE: TPCDS

STORE_SALES INVENTORY

Q1 Q2

Join cardinality is larger than either of its

input plans.

Does this make sense considering the schema?

Is a join specification (predicate) missing?

Should another table have been joined first?

Is a DISTINCT needed to remove duplicates?

29

Nested-loop Join with Inner Scan

30

|

2.72162e+10

NLJOIN

(3)

3.71737e+09

2.07853e+09

/-----+------\

475 5.72972e+07

TBSCAN TBSCAN

(4) (5)

301.283 7.82605e+06

215 4.37585e+06

| |

73049 2.88279e+09

TABLE: TPCDS TABLE: TPCDS

DATE_DIM_R STORE_SALES_R

Q1 Q2

NLJOINs with inner TBSCANs can be expensive

because the TBSCAN occurs for every outer row

(475 in this example).

Very expensive if the inner table is large.

Why isn’t HSJOIN used?

- No equality predicates?

If only inequality predicates, is there an index?

If there is an index, why wasn’t it chosen?

- A FETCH is required and index is poorly

clustered?

- Index can’t apply predicates using start/stop

keys?

30

Expensive Index Scans (1|3)

31

37654.1

NLJOIN

(3)

4.2062e+06

1.70648e+06

/--------+--------\

0.954141 39463.8

TBSCAN FETCH

(4) (5)

301.283 4.2059e+06

215 1.70627e+06

| /----+-----\

73049 39463.8 2.88279e+09

TABLE: TPCDS IXSCAN TABLE: TPCDS

DATE_DIM_R (6) STORE_SALES_R

Q1 3.92896e+06 Q2

1.66698e+06

|

2.88279e+09

INDEX: TPCDS

SSR_IX1

Q2

Index filters well but I/O is very high.

Check operator details to see how the

predicates are applied.

Start/stop keys should be used unless index

is used to avoid a SORT.

3) Sargable Predicate,

Comparison Operator: Equal (=)

Subquery Input Required: No

Filter Factor: 1.36894e-05

Predicate Text:

(Q2.SS_SOLD_DATE_SK = Q1.D_DATE_SK)

Name: SSR_IX1

Type: Index

Columns in index:

SS_ITEM_SK(A)

SS_SOLD_DATE_SK(A)

The index definition shows that the join column is not leading in the index and there is no other predicate to cover the leading column.
Consider reversing the columns in the existing index or creating a new index with the columns reversed.

31

Expensive Index Scans (2|3)

32

37654.1

NLJOIN

(3)

4.2062e+06

1.70648e+06

/--------+--------\

0.954141 39463.8

TBSCAN FETCH

(4) (5)

301.283 4.2059e+06
215 1.70627e+06

| /----+-----\

73049 39463.8 2.88279e+09

TABLE: TPCDS IXSCAN TABLE: TPCDS

DATE_DIM_R (6) STORE_SALES_R

Q1 3.92896e+06 Q2

1.66698e+06

|

2.88279e+09

INDEX: TPCDS

SSR_IX1

Q2

Expensive FETCH that doesn’t reduce the

cardinality. Can it be avoided by adding

more columns to the index?

5) FETCH : (Fetch)

Input Streams:

4) From Operator #6

Column Names:

+Q2.RID

5) From Object TPCDS.STORE_SALES_R

Column Names:

+Q2.SS_SALES_PRICE

Output Streams:

6) To Operator #3

Column Names:

+Q2.SS_SALES_PRICE

The FETCH operator details show that it doesn’t apply any predicates so it must only exist to retrieve columns. The stream information shows
that SS_SALES_PRICE is being fetched because it isn’t included in the index.

32

Expensive Index Scans (3|3)

33

37654.1

NLJOIN

(3)

388.342

237.78

/-----+------\

0.954141 39463.8

TBSCAN IXSCAN

(4) (5)

301.283 89.9253

215 23.7796

| |

73049 2.88279e+09

TABLE: TPCDS INDEX: TPCDS

DATE_DIM_R SSR_IX2

Q1 Q2

Creating a better index with the join

column leading and including the fetched

column avoids the FETCH and results in a

much cheaper IXSCAN.

Name: SSR_IX2

Type: Index

Columns in index:

SS_SOLD_DATE_SK(A)

SS_SALES_PRICE(A)

A good index can make a world of difference. The NLJOIN cost has dropped dramatically. Use explain to verify that it worked.

33

34

db2exfmt - Extended diagnostic information

• Explain diagnostic messages could indicate problems:
EXP0020W Table has no statistics. The table “DB2DBA”.”SALES” has not had runstats run on

it. This may result in a sub-optimal access plan and poor performance.

EXP0060W The following materialized query table (MQT) or statistical view was not eligible

for query optimization: “DB2DBA".“SV_STORE". The MQT cannot be used for query

optimization because one or more tables, views or subqueries specified in the MQT could

not be found in the query that is being explained.

EXP0147W The following statistical views may have been used by the optimizer to estimate

cardinalities: “DB2DBA".“SV_STORE".

34

Explain Diagnostic Messages

• Explain can provide helpful information such as:
• Notification about missing statistics
• Information about whether or not materialized query tables (MQTs) or

statistical views could be matched
• Syntax errors when using optimization profiles
• More will be added in future releases

• Messages are recorded in:
• EXPLAIN_DIAGNOSTICS
• EXPLAIN_DIAGNOSTICS_DATA

35

35

Check the RETURN operator details

36

1) RETURN: (Return Result)

Arguments:

BLDLEVEL: (Build level)

DB2 v11.1.9.0 : s1901181500

ENVVAR : (Environment Variable)

DB2_ANTIJOIN=EXTEND

DB2_REDUCED_OPTIMIZATION=YES[Embedded Optimization Guidelines]

HEAPUSE : (Maximum Statement Heap Usage)

6240 Pages

PLANID : (Access plan identifier)

3ecc6fdf9ece8198

PREPTIME: (Statement prepare time)

2856 milliseconds

SQLCA : (Warning SQLCA from compile)

SQLCODE 437; Function SQLNO26D; Message token '3'; Warning 'None'

STMTHEAP: (Statement heap size)

16384

Registry variables that affect query

optimization. Indicates how they are set.

Is prepare time reasonable considering the query

complexity? (Try reducing opt level)

Is STMTHEAP use reasonable considering the

query complexity? (Try reducing opt level)

SQL0437W rc 3 indicates an optimizer cost

underflow. Likely due to cardinality under-

estimation.

36

Speaker: John Hornibrook
Company: IBM Canada
Email Address: jhornibr@ca.ibm.com

John is a Senior Technical Staff Member responsible for

relational database query optimization on IBM's distributed

platforms. This technology is part of Db2 for Linux, UNIX

and Windows, Db2 Warehouse, Db2 on Cloud, IBM

Integrated Analytics System (IIAS) and Db2 Big SQL. John

also works closely with users to help them fully realize the

benefits of IBM's relational DB technology products.

37

